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Changes in mean climatic conditions will affect natural and soci-
etal systems profoundly under continued anthropogenic global
warming. Changes in the high-frequency variability of temper-
ature exert additional pressures, yet the effect of greenhouse
forcing thereon has not been fully assessed or identified in obser-
vational data. Here, we show that the intramonthly variability of
daily surface temperature changes with distinct global patterns
as greenhouse gas concentrations rise. In both reanalyses of his-
torical observations and state-of-the-art projections, variability
increases at low to mid latitudes and decreases at northern mid
to high latitudes with enhanced greenhouse forcing. These lat-
itudinally polarized daily variability changes are identified from
internal climate variability using a recently developed signal-to-
noise-maximizing pattern-filtering technique. Analysis of a multi-
model ensemble from the Coupled Model Intercomparison Project
Phase 6 shows that these changes are attributable to enhanced
greenhouse forcing. By the end of the century under a business-
as-usual emissions scenario, daily temperature variability would
continue to increase by up to a further 100% at low latitudes and
decrease by 40% at northern high latitudes. Alternative scenarios
demonstrate that these changes would be limited by mitigation
of greenhouse gases. Moreover, global changes in daily variability
exhibit strong covariation with warming across climate models,
suggesting that the equilibrium climate sensitivity will also play
a role in determining the extent of future variability changes.
This global response of the high-frequency climate system to
enhanced greenhouse forcing is likely to have strong and unequal
effects on societies, economies, and ecosystems if mitigation and
protection measures are not taken.

climate change | atmospheric science | temperature variability

The effect of anthropogenic greenhouse gas emissions on
mean climatic conditions is well understood. Theory, obser-

vational, and modeling work all demonstrate that average tem-
peratures increase as a result of elevated greenhouse gas con-
centrations (1). However, it is also of considerable importance
to natural and human systems whether changes in the tempo-
ral variability of climatic conditions have accompanied historical
global warming and whether they will do so in the future (2–5).
A more variable climate implies greater uncertainty and greater
frequency of extremes, both of which constitute more damaging
conditions.

The variability of climate from one year to the next has
received considerable attention. Large-scale climatic oscillations,
such as the El Niño Southern Oscillation and the Indian Ocean
Dipole, are dominant determinants of interannual variability
(6–8) and have been shown to exhibit more frequent extremes
under enhanced greenhouse forcing within comprehensive cli-
mate models (9–11), results that are supported by paleoclimatic
evidence (12). Identifying a response in interannual temperature
variability has been less conclusive. Some studies have attributed
recent summer temperature extremes to greater interannual
variability, both regionally (13) and globally (14), but there is still

debate as to the extent of the role of interannual variability (15–
17). Some regional trends in interannual temperature variability
have been identified (17–21), but there is no consensus between
observations and climate models (22).

Here, we focus on variability of temperature at a higher fre-
quency (daily), which a growing body of econometric literature
has identified as an important determinant of societal outcomes,
including human health (23–27), agriculture (28–30), and eco-
nomic growth (31). The effect of enhanced greenhouse gas
concentrations on the daily variability of temperature is there-
fore of wide societal importance and a critical component of the
impact of anthropogenic climate change.

Decreases in daily temperature variability at northern mid to
high latitudes have been detected in observations (32–34) and
agree well with predictions from comprehensive climate mod-
els (34–36) and physical reasoning (34, 35). Previous generations
of climate models have also suggested that daily variability may
increase during European summer (37) and across the tropics
(36, 38), but these predictions have not yet been detected in
observations or confirmed in state-of-the art climate models.
This paper unifies these works by presenting a global anal-
ysis of changes in subseasonal, daily temperature variability
under enhanced greenhouse forcing in both reanalyses of his-
torical observations (National Oceanographic and Atmospheric
Administration [NOAA] 20th Century Reanalysis Version 3 and
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Understanding how the variability of daily temperature may
change with greenhouse gas emissions is important because
it has been identified as a key factor in societal and economic
well-being. Assessing historical changes to daily temperature
variability in comparison with those from state-of-the-art cli-
mate models, we show that variability has changed with
distinct global patterns over the past 65 years, changes which
are attributable to rising concentrations of greenhouse gases.
If these rises continue, temperature variability is projected
to increase by up to 100% at low latitudes and decrease by
40% at northern high latitudes by the end of the century. We
further show that these changes would be limited by miti-
gating emissions and will depend on the equilibrium climate
sensitivity.
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the European Centre for Medium-Range Weather Forecasts
Reanalysis 5 [ERA-5]) and the latest generation of comprehen-
sive climate models (Coupled Model Intercomparison Project
phase 6 [CMIP-6]). Daily temperature variability refers to the
intramonthly SD of daily surface temperature from hereon. We
consider changes in daily variability in boreal winter (“DJF”),
boreal summer (“JJA”), and across the year (“annual”) to both
assess the season specific mechanisms identified in previous work
and to provide an aggregated overview of variability changes.

Historical Changes in Daily Temperature Variability
Identifying externally forced signals in climate data is compli-
cated by the internal multidecadal variability of the climate sys-
tem. In order to identify possible forced signals in daily temper-
ature variability, we use a pattern-recognition technique that has
been recently developed to identify spatial patterns with coher-
ent low-frequency temporal evolution (39, 40). Low-frequency
component analysis (LFCA), an extension of traditional princi-
pal component analysis (PCA), identifies linearly independent
modes that account for the greatest ratio of low frequency to
total variance (see Materials and Methods for further details).
Since climatic changes due to greenhouse forcing are slower to
evolve than those due to internal variability, this approach can
help to discriminate between them. LFCA has been shown to
successfully separate externally forced climate signals from inter-
nal multidecadal variability, such as those of global warming
and arctic amplification from El Niño Southern Oscillations and
Pacific Decadal Oscillations in observations of monthly mean
surface temperature (39, 40).

We apply LFCA to historical reanalyses of daily tempera-
ture variability (Materials and Methods). In each season and in
the annual case, the lowest-frequency component identified by
LFCA (LFC-1) has grown almost monotonically over the his-
torical period (Fig. 1), separate from higher-frequency modes,
which have not (SI Appendix, Fig. S1). In the NOAA 20th

Century Reanalysis, the corresponding spatial patterns exhibit
strong latitudinal polarization in both the annual and DJF cases:
Reductions in daily temperature variability at northern mid
to high latitudes are opposed by increases across the major-
ity of the continental land mass elsewhere (Fig. 1 A and B).
For JJA, the pattern consists of reductions across North Amer-
ica, the high Arctic, and parts of North Africa opposed by
strong increases elsewhere (Fig. 1C). These latitudinally polar-
ized components are responsible for increases and decreases
of up to 40% and 20% over the past 65 y, with particularly
strong percentage increases across the tropics (SI Appendix,
Fig. S2 A–C).

Similar spatial patterns are detected in the ERA-5 reanaly-
sis, Fig. 1 D–F. In particular, the latitudinal polarization in the
annual and DJF cases and the increases across the tropics, Aus-
tralia, Europe, and large parts of South America and Africa in
boreal summer are distinct features in both. Regional discrep-
ancies are present and are likely to occur due to the different
temporal extent of the two reanalyses. We continue to use the
NOAA 20th Century Reanalysis as our main specification, since
we expect the longer time period to improve the separation of an
externally forced response from internal climate variability.

The detection of these patterns of global change in daily
temperature variability is robust to different specifications of
the LFCA (SI Appendix, Fig. S3) and to alternative detection
methods (SI Appendix, Fig. S4, grid-cell linear trends). This
detection of historical increases in daily temperature variability
in European summer and across the tropics and wider Southern
Hemisphere confirms the predictions of previous generations of
climate models (36–38).

Global Climate Projections from CMIP-6
We test whether the historical and monotonic growth of these
global patterns in daily temperature variability is attributable to
historically increasing concentrations of greenhouse gases with a

A

B

C

D

E

F

Fig. 1. Lowest-frequency patterns of change in daily temperature variability detected with LFCA from reanalyses of historical observations. Patterns
of change in annual (A and D), boreal winter (DJF; B and E), and boreal summer (JJA; C and F) daily temperature variability, which have grown
monotonically over the historical period, are identified. Results from the NOAA 20th Century Reanalysis version 3 are shown in A–C, and those from
the shorter ERA-5 reanalysis are shown in D–F. Interdecadal changes (between the first and final decade) in daily temperature variability due to the
lowest-frequency component are shown as colored maps, the time evolution of which is shown at the bottom in gray with a 10-y running mean
in black.
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multimodel ensemble of 10 bias-corrected Coupled Global Cir-
culation Models (CGCMs) from CMIP-6 (refs. 41 and 42; see
Materials and Methods for details). Daily temperature variabil-
ity is calculated from the ensemble under historical (1950–2015)
and future (2015–2100) greenhouse forcing. Future forcing is
specified by the Shared Socioeconomic Pathway (SSP)-585, a
business-as-usual emissions scenario under which greenhouse
forcing continues to increase monotonically. Comparing daily
temperature variability between the ensemble under historical
forcing and the reanalysis data suggests that daily temperature
variability is represented by the ensemble very well (SI Appendix,
Fig. S5).

Multimodel ensembles, such as CMIP-6, encompass inter-
model differences in both the representation of internal climate
variability (due to variations in initial conditions) and in the rep-
resentation of the forced response to greenhouse gases (due to
structural differences). LFCA provides the opportunity to iden-

tify a forced response from internal climate variability within
each individual ensemble member, thus retaining any biases in
the modeling of the forced response. This allows a more nuanced
estimate of the forced response to be made than would be possi-
ble with a simple multimodel average. Moreover, LFCA has been
shown to identify externally forced signals from a single climate
model with greater accuracy than ensemble averages with even
20 realizations (40). We therefore apply LFCA to calculations of
daily temperature variability from individual ensemble members
under historical and future forcing, covering the period 1950 to
2100.

In each model and in each season, monotonically increasing
patterns of change are identified from internal, multidecadal cli-
mate variability, which shows a high degree of consistency both
between models and with those identified from the reanalysis
of historical observations (Fig. 2 and SI Appendix, Fig. S6). In
both the annual and DJF cases, strong latitudinal dependence

Fig. 2. Lowest-frequency patterns of change in daily temperature variability from individual CMIP-6 climate models under greenhouse forcing (1950–2015:
historical; 2015–2100: SSP-585), detected with LFCA. Results from 5 of the 10 models are shown for the annual (A–F), the boreal winter (DJF; G–L), and
the boreal summer (JJA; M–R) response; see SI Appendix, Fig. S6 for the remaining 5 models. Interdecadal changes (1950–1960 to 2090–2100) due to the
lowest-frequency component (Materials and Methods) are shown as colored maps, the time evolution of which are shown in the bottom panels in gray,
with a 10-y running mean in black.
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in the response of daily temperature variability is noted. Most
discrepancies between models are concentrated at the latitudi-
nal boundary between decreasing and increasing variability or in
North Africa (Figs. 2 and 3 D and E and SI Appendix, Fig. S6).
In JJA, models consistently predict increasing variability across
the tropics, Southern Hemisphere, and Europe, but show poor
agreement on the signs of change at northern mid to high lati-
tudes (with the exception of Greenland; Figs. 2 and 3F and SI
Appendix, Fig. S6).

Attribution to Greenhouse Forcing
To attribute the observed historical changes identified in daily
temperature variability to increasing greenhouse forcing requires
two further steps. First is a formal assessment of the similar-
ity between the historically observed changes and the expected
response to greenhouse forcing identified from the CMIP-6
ensemble. We do so using two pattern-correlation statistics, fol-
lowing the work of previous detection-attribution studies (43).
The uncentered pattern correlation (C) accounts for both the
spatial similarity between and the magnitudes of the two pat-
terns, whereas the centered pattern correlation (R) accounts
only for their spatial similarity. The historically observed pat-
terns of per-decadal change are taken as those identified with
LFCA from the NOAA 20th Century Reanalysis (Fig. 3 A–C).
The expected response to greenhouse forcing is estimated as
the multimodel-ensemble average of the patterns of per-decadal

change obtained from the lowest-frequency component of each
individual model, detected with LFCA (Fig. 3 D–F). Second,
the significance of the historically observed changes must be
assessed with respect to those that could occur due to the nat-
ural internal variability of the climate system. We apply LFCA to
control runs of the CMIP-6 ensemble under constant preindus-
trial greenhouse forcing to provide estimates of the distribution
of interdecadal changes that can result from internal climate
variability (Materials and Methods).

A high degree of spatial similarity between the historically
observed and the forced response of daily temperature variabil-
ity is noted in the case of the annual and DJF response (Fig. 3
G–I and SI Appendix, Fig. S7; centered pattern correlation R). A
lesser degree of similarity is noted in JJA, likely due to the lesser
degree of polarization in the response and the greater intermodel
disagreement at northern mid to high latitudes. These assess-
ments of spatial similarity are improved when regions in which
less than 90% of climate models agree on the sign of change are
excluded, as shown in Fig. 3. The uncentered pattern correlation
(C), which assesses both spatial similarity and magnitude, is gen-
erally lower (with the exception of JJA). This is to be expected,
given the weaker forcing in the historical period than in the
SSP-585 scenario.

Most importantly, these assessments of similarity are signifi-
cant with respect to those expected due to natural internal cli-
mate variability (Fig. 3 G–I and SI Appendix, Fig. S7 G–I). When

Fig. 3. Attribution of historical changes in daily temperature variability to greenhouse forcing. (A–C) Historical patterns of change in daily temperature
variability estimated with LFCA from the NOAA 20th Century Reanalysis of historical observations. (D–F) Simulated patterns of change in daily temperature
variability estimated as the multimodel mean of the lowest-frequency component of each CMIP-6 ensemble member under historical and SSP-585 green-
house forcing. Gray coloring indicates regions in which less than 90% of the models agree on the sign of change (see SI Appendix, Fig. S7 for results without
this exclusion). (G–I) Centered (R) and uncentered (C) pattern-correlation statistics between the observed and simulated response of daily temperature vari-
ability to greenhouse forcing (blue) in comparison to those that could occur due to unforced internal climate variability (gray). Estimates of the distribution
of changes due to unforced internal variability are obtained by applying LFCA to control runs of the CMIP-6 ensemble under constant preindustrial forcing
(Materials and Methods). The 99th, 95th, and 90th percentiles of the distributions of pattern correlations between forced and unforced simulations are
shown in red.
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considering only spatial similarity with the centered pattern-
correlation statistic (R), the similarity of the historically observed
response to the forced response is significant at least at the 1%
level in the annual and DJF cases and at the 10% level in the
JJA case. Moreover, when considering both spatial similarity and
magnitude via the uncentered pattern-correlation statistic (C),
the similarity is unmatched in the CMIP-6 control runs in all
seasons and, therefore, significant at least at the 0.24% level.

We therefore conclude that the historically observed global
patterns of change in daily temperature variability are extremely
unlikely to occur due to natural internal variability and are con-
sistent with the expected response to anthropogenic greenhouse
forcing in the annual, DJF, and JJA cases.

Scaling between Variability Changes and Warming
Mechanisms by which daily temperature variability may change
have been linked to mean surface temperature changes (34,
35, 37), suggesting that daily variability changes may scale with
warming. Such scaling has recently been identified in CMIP-5
models for interannual variability in European summer tempera-
tures (21), but has not been considered for daily variability or at a
global scale. We address this by assessing whether daily variabil-
ity and mean temperature changes covary across CMIP-6 models
and forcing scenarios.

Changes in both variables are estimated for each ensem-
ble member from the lowest-frequency component identified
with LFCA. Patterns of change are land-area averaged, after
which strong linear covariation is noted across climate models
and forcing scenarios (Fig. 4, SSP-126 shown in blue, SSP-585
shown in red). This scaling is also robustly identified for changes
occurring over different 25-y periods within individual climate
models (SI Appendix, Fig. S8). Furthermore, we find that the
historically observed variability changes are considerably larger
than those of the CMIP-6 ensemble, given the historical level
of warming (Fig. 4, NOAA 20th Century Reanalysis shown
in black).

These findings have two important implications. First, that
future changes in daily temperature variability will depend
not only on the extent of greenhouse gas forcing, but also
on the true climate sensitivity, re-emphasizing the importance
of providing constraints on its value. Second, that global cli-
mate models underpredict the extent to which daily variability
changes in response to greenhouse forcing and surface warm-
ing, suggesting that CMIP-6 projections provide only a lower
bound on how variability may change under future forcing
scenarios.

Discussion and Conclusions
The present study has identified global patterns of change in
daily temperature variability, which have grown monotonically
over the past 65 y in reanalyses of historical observations. This
provides evidence of increasing temperature variability across
the tropics, Southern Hemisphere, and European summer in
observational products and confirms the detection of decreasing
variability at northern mid to high latitudes shown in previous
work (32–35). The physical mechanisms behind these changes
are well understood at northern mid to high latitudes, where Arc-
tic amplification has reduced meridional temperature gradients,
leading to reduced thermal advection (34, 35). The mecha-
nisms behind the increases at lower latitudes found here are
less clear, although modeling work on daily variability changes
in Europe (37) and interannual variability changes across the
tropics (22) suggests that soil drying and the resulting balance
between sensible and latent heat fluxes may be a key driving
process. The present demonstration of a robust scaling between
surface warming and variability changes further suggests that
the driving mechanisms will be closely related to surface
warming.

B

C

A

Fig. 4. Scaling between average continental warming and absolute vari-
ability changes estimated from CMIP-6 climate models and the NOAA 20th
Century Reanalysis of historical observations for annual (A), boreal winter
(“DJF,” B) and boreal summer (“JJA,” C) changes. Strong covariation is noted
across climate models and forcing scenarios (SSP-126 shown in blue, SSP-585
in red). See SI Appendix, Fig. S8 for scaling between changes occurring over
different 25-y periods within individual climate models.

Of further interest is the latitudinal boundary between increas-
ing and decreasing temperature variability, which varies con-
siderably between models (SI Appendix, Fig. S9) and with
longitude (SI Appendix, Fig. S10). This is most clearly noted
by the opposed increases across Europe and decreases across
North America, as seen in the reanalyses (Fig. 1 A and D and
SI Appendix, Fig. S10 D–F). This longitudinal dependence of
the north to south transition persists in CMIP-6 (SI Appendix,
Fig. S10 A–C), despite globally coherent shifts in the latitudi-
nal boundary between models (e.g., compare Canadian Earth
System Model Version 5 [CanESM5] and Centre National de
Recherches Météorologiques Climate Model 6-1 [CNRM-CM6-
1] in SI Appendix, Fig. S6 B and C). This effect may result from
a longitudinally heterogeneous balance between the two mech-
anisms discussed above, which may be modulated by regionally
dependent phenomena, such as geography, ocean currents (i.e.,
the Atlantic Meridional Overturning Current), aerosol loading,
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or greenhouse gas emissions. Distinguishing between these fac-
tors is beyond the scope of this work, but offers a promising
avenue for future research.

The assessment of a multimodel ensemble of CMIP-6 climate
models has shown that the historically observed global changes in
daily temperature variability are very unlikely to have occurred
due to natural internal climate variability and are highly con-
sistent with the expected response to anthropogenic greenhouse
forcing. Our assessment of the significance of these changes rests
on the assumption that climate models accurately represent the
internal variability of the real-world climate system, a common
assumption of detection-attribution frameworks (44). In future
work, this assumption could be complemented by adapting
recent methods that estimate trend uncertainty due to internal
variability directly from observations (45, 46). Furthermore, the
CMIP-6 historical and SSP scenarios include additional forcing
components (volcanic, solar, and aerosol) to greenhouse gases,
which might undermine confidence that the detected response
of daily temperature variability can be exclusively attributed to
greenhouse gases. Nevertheless, a closer analysis of these forc-
ings shows that only greenhouse gases can both explain the
growth of the response across time and the two forcing scenarios
(SI Appendix, SI Text and Fig. S11) and are physically consistent
with the demonstrated scaling between variability changes and
surface warming (SI Appendix, SI Text).

This global response of the high-frequency climate system has
already caused changes in daily temperature variability of up to
40%, which are projected to change by a further 100% by the end
of the century under a business-as-usual emission scenario. Anal-
ysis under an alternative future forcing scenario (SSP-126) (SI
Appendix, Figs. S12 and S13) suggests that these changes would
be limited considerably by mitigation of greenhouse gases. Fur-
thermore, the observed scaling between warming and variability
changes suggests that the Earth’s true climate sensitivity will also
determine the future development of daily temperature variability
and that future changes are likely to be larger than those projected
by the CMIP-6 ensemble. These changes are likely to have strong
impacts on human (23–31) and ecological (4, 5) systems across
the globe, the full extent of which must be quantified in future
multidisciplinary research efforts. Since the biggest increases in
daily temperature variability are observed in and projected for
low-latitude regions with typically low income and low historical
emissions of greenhouse gases, regional inequalities and climate
injustices are likely to be exacerbated.

Materials and Methods
Daily Temperature Variability. Daily temperature variability is measured as
the SD of daily surface temperature within a given month of a given year.
Monthly values of daily temperature variability and of mean temperature
are calculated from the daily 2-m surface temperature at each grid cell, and
these values are mean averaged over months of a given season (for DJF and
JJA) or year (for annual).

Reanalysis Data. Daily 2-m surface temperature from the NOAA 20th Cen-
tury Reanalysis Version 3 (1950–2015) (47) and from the ERA-5 reanalysis
(1979–2019) are used. These reanalyses are chosen for their high temporal
resolution (as is necessary to assess daily variability), global coverage, and
long prior periods of reanalysis development. Data are obtained on regular
grids at daily temporal resolution, 1 by 1 degree for NOAA 20th Century
Reanalysis and 0.5 by 0.5 degree for ERA-5.

Comprehensive Climate Model Data. Daily 2-m surface temperature from an
ensemble of 10 bias-adjusted CGCMs from the CMIP-6 (41) are used. Bias
adjustment is done by the Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP) and is explicitly designed to preserve trends across different
quantiles of daily climate variables (42); this feature makes it appropri-
ate to assess trends in the variability of daily temperature. We use the
models under preindustrial, historical, and future greenhouse forcing spec-
ified by SSP-126 and -585 (48). These represent a strong mitigation and
business-as-usual emissions scenario, respectively. All data are obtained on a

0.5-by-0.5-degree grid at daily temporal resolution. A list of the CGCMs and
their source institutions is given in SI Appendix, Table S1. Daily temperature
variability is calculated on the original grid before linear interpolation to
the grid of the NOAA 20th Century Reanalysis for further analysis.

LFCA LFCA is a form of linear discriminant analysis that has been recently
developed by the authors of refs. 39 and 40 to identify linearly indepen-
dent modes that vary with the lowest frequency. It has been shown to be
a powerful tool to isolate greenhouse-forced spatiotemporal signals from
unforced multidecadal internal variability when only a single realization of
the climate system is available. For a detailed description of the motivation
for and development of the technique, see refs. 39 and 40. Here, we out-
line the method and our application of it to daily temperature variability.
Anomalies of seasonal or annual daily temperature variability are calculated
with respect to their mean values across the time period in question. The fol-
lowing procedures of LFCA are then applied. Empirical orthogonal functions
(EOFs) are calculated with a traditional PCA. EOFs are the eigenvectors, ek,
with eigenvalues, σ2

k , of the covariance matrix, C, of the n-by-p dimensional
demeaned daily temperature variability data, X:

Cek =σ
2
kek, C =

1

n− 1
XT X. [1]

Linear combinations of the first, N, EOFs, uk, are then found that
maximize the ratio, rk, of low frequency to total variance that their
corresponding time series, tk = Xuk, can explain:

rk =
t̃T
k t̃k

tT
k tk

. [2]

Low-frequency variance is estimated by filtering departures from linear
trends with a linear Lancoz low-pass filter, L(T−1), with cutoff frequency,
T−1, and reflecting boundary conditions:

t̃k = L(T−1)tk. [3]

This procedure identifies low-frequency components (LFCs), tk, based on
the frequency of their evolution. The corresponding low-frequency pat-
terns (LFPs), vk, are obtained by projecting the unfiltered data onto these
components:

ṽk = XT tk. [4]

LFCs describe the temporal evolution of their accompanying spatial pat-
tern (LFP). The resultant LFCs are orthogonal to one another and are
ordered by increasing frequency. The justification for this choice of variance
maximization (maximizing the low-frequency to total variance ratio, rather
than maximizing the total variance) is that spatiotemporal changes due to
greenhouse forcing occur with a lower frequency than those due to most
internal variability of the climate system.

The cutoff frequency used here is T−1 = 10−1years−1, and the number of
leading EOFs retained in the linear combinations, N, is selected to maintain
roughly 70% of the raw variance of X. These choices follow previous work
on the development of this method in the context of detecting anthro-
pologically forced climate changes (39, 40). For the NOAA 20th Century
Reanalysis, this corresponds to n = 15 for the annual and DJF cases and
n = 20 for the JJA case. For the ERA-5 reanalysis data, this corresponds to
n = 15, 12, and 16 for the annual, DJF, and JJA cases, respectively. For the
CMIP-6 climate models, we use n = 15 for the annual and DJF case and n =
30 for the JJA case. Tests of the robustness of the results to these choices are
shown in SI Appendix, Fig. S3.

LFCA is applied to daily temperature variability as calculated from the
NOAA 20th Century and ERA-5 reanalyses and from individual climate mod-
els under historical and future forcing. The interdecadal changes due to a
given component are calculated by multiplying the LFP by the difference
between decadal averages of the corresponding LFC. LFCs are plotted both
as raw data and after filtering with a 10-y running mean.

Attribution to Greenhouse Forcing. We use pattern-correlation statistics as
described in ref. 43 to estimate the similarity between the global patterns of
change in daily temperature variability identified from the reanalyses and
the CMIP-6 ensemble under greenhouse forcing. We use both the uncen-
tered (C) and centered (R) pattern correlations to assess the spatial similarity
with and without accounting for the magnitude of the patterns respec-
tively. Given two spatial patterns, x and y, of dimension n, the uncentered
pattern-correlation statistic (C) is given by:

C =
x.y

y.y
, [5]

6 of 8 | PNAS
https://doi.org/10.1073/pnas.2103294118

Kotz et al.
Footprint of greenhouse forcing in daily temperature variability

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
28

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103294118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103294118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103294118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103294118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103294118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103294118/-/DCSupplemental
https://doi.org/10.1073/pnas.2103294118


www.manaraa.com

EA
RT

H
,A

TM
O

SP
H

ER
IC

,
A

N
D

PL
A

N
ET

A
RY

SC
IE

N
CE

S

and the centered pattern-correlation statistic (R) by:

R =
(x− x̂).(y− ŷ)

nsxsy
, [6]

where the hat denotes the spatial average over a pattern, the dot
signifies a dot product, and s2

x =
(x−x̂).(x−x̂)

n−1 , with sy defined equivalently.
The centered pattern correlation (R) ranges between −1 and 1, with

much the same interpretation as a Pearson correlation coefficient; its value
represents only the spatial similarity between the two patterns. The uncen-
tered pattern correlation (C) is unbounded, and its value represents both
the spatial similarity of x to y and the magnitude of x as a proportion of
that of y.

These statistics are calculated between the responses identified from the
reanalyses and the CMIP-6 ensemble under greenhouse forcing. To assess
the significance of these correlations with respect to changes that could
occur due to natural internal climate variability, we use CMIP-6 control
runs under constant preindustrial greenhouse forcing. A total of 500 y of
postspin-up control runs are available for each model, other than Centre
National de Recherches Météorologiques Earth System Model 2-1 (CNRM-
ESM2-1), for which 300 y are available. Daily temperature variability is
calculated, and the data are interpolated to the reanalysis grid, as described
above. The same detection method as applied to the reanalysis data (LFCA,
with the same number of EOFs retained, N) is applied to calculate inter-
decadal differences between pairs of nonoverlapping decades. Decadal
pairs are separated by 55 y to match the temporal period of the NOAA 20th
Century Reanalysis, over which the observed changes in daily temperature
variability are detected. Pooling these differences across models yields 420
interdecadal changes in daily temperature variability. Correlations between
these changes and the expected forced response of the CMIP-6 ensemble
under greenhouse forcing are calculated to provide a distribution of pos-
sible correlations, which could occur solely due to natural internal climate
variability.

This approach differs from optimal fingerprinting, a commonly used
detection-attribution framework, in two important ways. First, LFCA

uses spatiotemporal covariance information to optimally separate low-
frequency signals from internal climate variability. As such, these estima-
tions of low-frequency changes are less obscured by internal variability
than those based on linear trends and spatial or temporal averages (39,
40), which are commonly used in detection-attribution frameworks. Sec-
ond, low-frequency patterns of change are here detected from observa-
tions and simulations separately before their similarity is assessed. This
avoids assumptions regarding the accuracy with which climate mod-
els simulate the true response to greenhouse forcing, assumptions that
are used to help detect a response in observations when projecting an
optimal fingerprint, obtained from simulations, into the observational
data.

Scaling between Variability Changes and Warming Continental, area-
weighted averages of changes in mean temperature and daily temperature
variability are calculated from the interdecadal patterns of change iden-
tified with LFCA from the reanalysis and CMIP-6 data. In Fig. 4, the
interdecadal changes are calculated between the first and final decades
(1950–1960 to 2090–2100). In SI Appendix, Fig. S8, these changes are calcu-
lated between pairs of nonoverlapping decades separated by 25 y, yielding
12 changes per model per forcing scenario to assess the scaling within indi-
vidual climate models. Least-squares, linear regression models are used to
assess the covariance of the simulated per-decadal warming and variability
changes across CMIP-6 models and forcing scenarios.

Data Availability. Previously published data were used for this work
(CMIP-6; https://pcmdi.llnl.gov/CMIP6/, NOAA 20th Century Reanaly-
sis; https://psl.noaa.gov/data/20thC Rean/, and ERA5; https://www.ecmwf.
int/en/forecasts/datasets/reanalysis-datasets/era5/).

ACKNOWLEDGMENTS. This work was supported by the Volkswagen Foun-
dation. We thank Stefan Lange and the ISIMIP team for their work preparing
the bias-corrected climate model data and the numerous teams of cli-
mate modelers, without whose efforts this study would not have been
possible.

1. Intergovernmental Panel on Climate Change, Climate Change 2013: The Physical Sci-
ence Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge,
UK, 2013).

2. R. W. Katz, B. G. Brown, Extreme events in a changing climate: Variability is more
important than averages. Clim. Change 21, 289–302 (1992).

3. S. Rahmstorf, D. Coumou, Increase of extreme events in a warming world. Proc. Natl.
Acad. Sci. U.S.A. 108, 17905–17909 (2011).

4. D. A. Vasseur et al., Increased temperature variation poses a greater risk to species
than climate warming. Proc. Royal Soc. B. 281, 20132612 (2014).

5. A. W. R. Seddon, M. Macias-Fauria, P. R. Long, D. Benz, K. J. Willis, Sensitivity of global
terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

6. C. Ropelewski, M. S. Halpert, Global and regional scale precipitation patterns asso-
ciated with the El Niño/Southern Oscillation. Mon. Weather Rev. 115, 1606–1626
(1987).

7. M. J. McPhaden, S. E. Zebiak, M. H. Glantz, ENSO as an integrating concept in earth
science. Science 314, 1740–1745 (2006).

8. W. Cai et al., ENSO and greenhouse warming. Nat. Clim. Chang. 5, 849–859 (2015).
9. W. Cai et al., Increasing frequency of extreme El Niño events due to greenhouse

warming. Nat. Clim. Chang. 4, 111–116 (2014).
10. W. Cai et al., Increased frequency of extreme Indian Ocean Dipole events due to

greenhouse warming. Nature 510, 254–258 (2014).
11. W. Cai et al., Increased frequency of extreme La Niña events under greenhouse

warming. Nat. Clim. Chang.e 5, 132–137 (2015).
12. P. R. Grothe et al., Enhanced El Niño–Southern Oscillation variability in recent

decades. Geophys. Res. Lett. 47, e2019GL083906 (2020).
13. C. Schär et al., The role of increasing temperature variability in European summer

heatwaves. Nature 427, 332–336 (2004).
14. J. Hansen, M. Sato, R. Ruedy, Perception of climate change. Proc. Natl. Acad. Sci.

U.S.A. 109, E2415–E2423 (2012).
15. A. Rhines, P. Huybers, Frequent summer temperature extremes reflect changes in the

mean, not the variance. Proc. Natl. Acad. Sci. U.S.A 110, E546–E546 (2013).
16. J. Hansen, M. Sato, R. Ruedy, Reply to Rhines and Huybers: Changes in the fre-

quency of extreme summer heat. Proc. Natl. Acad. Sci. U.S.A. 110, E547–E548
(2013).

17. C. Huntingford, P. D. Jones, V. N. Livina, T. M. Lenton, P. M. Cox, No increase in global
temperature variability despite changing regional patterns. Nature 500, 327–330
(2013).

18. G. Lenderink, A. van Ulden, B. van den Hurk, E. van Meijgaard, Summertime inter-
annual temperature variability in an ensemble of regional model simulations:
Analysis of the surface energy budget. Clim. Chang. 81, 233–247 (2007).

19. E. M. Fischer, C. Schär, Future changes in daily summer temperature variability:
Driving processes and role for temperature extremes. Clim. Dyn. 33, 917 (2008).

20. S. Bathiany, V. Dakos, M. Scheffer, T. M. Lenton, Climate models predict increasing
temperature variability in poor countries. Sci. Adv. 4, eaar5809 (2018).

21. D. Chan et al., Summertime temperature variability increases with local warming in
midlatitude regions. Geophys. Res. Lett. 47, e2020GL087624 (2020).

22. T. M. Lenton, V. Dakos, S. Bathiany, M. Scheffer, Observed trends in the magnitude
and persistence of monthly temperature variability. Sci. Rep. 7, 5940 (2017).

23. L. Shi, I. Kloog, A. Zanobetti, P. Liu, J. D. Schwartz, Impacts of temperature and its
variability on mortality in New England. Nat. Clim. Chang. 5, 988–991 (2015).

24. A. Zanobetti, M. S. O’Neill, C. J. Gronlund, J. D. Schwartz, Summer temperature vari-
ability and long-term survival among elderly people with chronic disease. Proc. Natl.
Acad. Sci. U.S.A. 109, 6608–6613 (2012).

25. Yuming et al., Temperature variability and mortality: A multi-country study. Environ.
Health Perspect. 124 (2016).

26. J. Yang et al., Vulnerability to the impact of temperature variability on mortality in
31 major Chinese cities. Environ. Pollut. 239, 631–637 (2018).

27. T. Xue, T. Zhu, Y. Zheng, Q. Zhang, Declines in mental health associated with
air pollution and temperature variability in China. Nat. Commun. 10, 2165
(2019).

28. T. R. Wheeler, P. Q. Craufurd, R. H. Ellis, J. R. Porter, P. V. Prasad, Temperature
variability and the yield of annual crops. Agric. Ecosyst. Environ. 82, 159–167
(2000).

29. P. Rowhani, D. B. Lobell, M. Linderman, N. Ramankutty, Climate variability and crop
production in Tanzania. Agric. For. Meteorol. 151, 449–460 (2011).

30. A. Ceglar, A. Toreti, R. Lecerf, M. V. der Velde, F. Dentener. Impact of meteorological
drivers on regional inter-annual crop yield variability in France. Agric. For. Meteorol.,
216, 58–67 (2016).

31. M. Kotz, L. Wenz, A. Stechemesser, M. Kalkuhl, A. Levermann, Day-to-day tem-
perature variability reduces economic growth. Nat. Clim. Chang. 11, 319–325
(2021).

32. T. R. Karl, R. W. Knight, N. Plummer, Trends in high-frequency climate variability in
the twentieth century. Nature 377, 217–220 (1995).

33. P. J. Michaels, R. C. Balling Jr., R. S. Vose, P. C. Knappenberger, Analysis of trends in
the variability of daily and monthly historical temperature measurements. Clim. Res.
10, 27–33 (1998).

34. J. A. Screen, Arctic amplification decreases temperature variance in northern mid- to
high-latitudes. Nat. Clim. Chang. 4, 577–582 (2014).

35. T. Schneider, T. Bischoff, H. Plstrokotka. Physics of changes in synoptic midlatitude
temperature variability. J. Clim. 28, 2312–2331 (2015).

36. A. Kitoh, T. Mukano, Changes in daily and monthly surface air temperature variabil-
ity by multi-model global warming experiments. J. Meteorol. Soc. Jpn. 87, 513–524
(2009).

37. E. M. Fischer, J. Rajczak, C. Schär, Changes in European summer temperature
variability revisited. Geophys. Res. Lett. 39, L19702 (2012).

Kotz et al.
Footprint of greenhouse forcing in daily temperature variability

PNAS | 7 of 8
https://doi.org/10.1073/pnas.2103294118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
28

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2103294118/-/DCSupplemental
https://pcmdi.llnl.gov/CMIP6/
https://psl.noaa.gov/data/20thC_Rean/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5/
https://doi.org/10.1073/pnas.2103294118


www.manaraa.com
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